If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2+75x-166=0
a = 4; b = 75; c = -166;
Δ = b2-4ac
Δ = 752-4·4·(-166)
Δ = 8281
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{8281}=91$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(75)-91}{2*4}=\frac{-166}{8} =-20+3/4 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(75)+91}{2*4}=\frac{16}{8} =2 $
| 7(6b+4)=8b-3 | | -11e+8=41 | | -2n=6n+4+5/4 | | -425x=850 | | t/6−31=-25 | | 7(6-y)=-3(y-2 | | 2x+2x-81=180 | | 5h-h-h-3h+4h=8 | | 5x+3=11x−39 | | 6x-20=3x+2 | | t/6− 31=–25 | | 3n-9=-0.15 | | 2x+2x+81=180 | | 1.2+5f=11.45 | | 3.4m=-13.6 | | t6− 31=–25 | | a(a-4)=4a | | 7(2m+3)=14m+3 | | -6+3p=-9 | | 8(2x+7)=16x+56 | | 7y-14=3 | | 2x+2x=81 | | 4(y+4)=72 | | x-8=83 | | 2x=(6x+30) | | 10x^2+89x=9 | | y/2-9=12 | | 4+6f=f–21 | | 16v+2v+v-14v+3v=8 | | (1/2)(6x-4)+4x=26 | | 14+2(3x+4)=52 | | 2p-26=10 |